Principles of Meanurement 111 Systems Exam - PoMS, 07/11/2011

• Write each question on a sheet of paper.

• Write your name and student ID on each sheet.

- Pay attention to units. A numerical result without a unit will be considered wrong!
- Only a regular calculator is allowed.

• This is NOT an open book exam.

- You are allowed to bring one A4 page with your own notes (one side only).
- You have 3 hours to complete the exam.

Question 1: General (2.5 points)

(a) Explain the working principle of a Hall sensor and what it can measure.

b) What is the Nyquist sampling theorem and explain its underlying principle.

(Lc) What is reluctance and explain qualitatively the working principle of a variable reluctance tachogenerator.

d) What is the working principle behind Amplitude Modulation (AM) and explain how such a technique can help to reduce external interferences?

L e) Explain qualitatively the working principle of one possible implementation of an Analogue to Digital Converter (ADC).

Table 1: Input for exam question 2.

	Pitot tube	Differential pressure transmitter	ADC	Microcontroller with display
model equations	$\Delta P = \frac{1}{2}\rho v_T^2$	$i = K_1 \Delta P + a_1$	$n = K_2 i + a_2$	$v_M = K_3 \sqrt{n^{1.01} - 59}$
mean values	$\overline{ ho} = 1.3$	$\overline{K_1} = 0.064$ $\overline{a_1} = 4.0$	$\overline{K_2} = 12.2$ $\overline{a_2} = 0.0$ with n being rounded off to nearest integer	$\overline{K_3} = 1.44$
Half-widths of rectangular distribution	$h_{\rho} = 0.12$	$h_{a_1} = 0.04$	$h_{a_2} = 0.5$	$h_{K_3} = 0.0$

Question 2: A fluid velocity measurement system (1.5 points)

A fluid velocity measurement system consists of a pitot tube, a differential pressure transmitter, an analogue-to-digital converter (ADC) and a microcontroller with display facilities. Table 1 gives the model equations and parameters for each element in the system. The microcontroller calculates the measured value of velocity assuming a constant density.

Show that for a rectangular error distribution with a half width of h, the standard deviation $\sigma = h/\sqrt{3}$.

b) Estimate the mean and standard deviation of the error probability density function assuming the true value of velocity, v_T , to be 14 m/s.

Question 3: A force measurement system (1.5 points)

A force measurement system consists of linear elements and has an overall steady-state sensitivity of unity. The dynamics of the system are determined by the second-order transfer function of the sensing element, which has a natural frequency $\omega_n = 35$ rad/s and a damping ratio $\xi = 0.15$. Calculate the system dynamic error corresponding to the periodic input force signal:

 $F(t) = 50 \left(\sin 10t + 1/3 \sin 30t + 1/5 \sin 50t \right),$

with t in seconds and F(t) in Newtons.

Question 4: A potentiometer (2 points)

A potentiometer has a total length of 10 cm and a resistance of 200 Ω .

- a) Calculate the supply voltage so that the power dissipation is 1 W.
- b) Draw the Thévenin equivalent circuit for an 8 cm displacement.
- c) The potentiometer is connected to a recorder with a resistance R_L . Find R_L such that the recorder voltage is 7% less than the open circuit voltage at an 8 cm displacement.

2

Question 5: A strain gauge measurement system (2.5 points)

Consider a strain gauge measurement system as indicated in Fig. 1. The sensor consists of 4 strain gauges for which R_1 and R_4 are placed in tensile mode, e.g. $R_1 = R_4 = R_0(1 + Ge)$, and R_2 and R_3 in compressive mode, e.g. $R_2 = R_3 = R_0(1 - Ge)$, with $R_0 = 100 \Omega$ at a temperature of T = 20 °C and a gauge factor of G = 2. The power supply has a voltage of $V_S = 12$ V. The sensor is connected to a recorder element via a cable with a total resistance of $R_C = 50 \Omega$. The recorder has a loading resistance of $R_L = 10 \text{ k}\Omega$.

- a) Find the Thévenin equivalent voltage, V_{Th} , and the corresponding impedance, Z_{Th} , of the sensor element.
- b) Calculate the voltage over R_L , V_L , for a strain of $e = 10^{-3}$ at T = 20 °C. How large is the loading effect on the recorder?
 - (c) The temperature of the sensor increases, which leads to an increase in the resistances of the strain elements, R_1 , R_2 , R_3 , and R_4 , by 5 Ω . What is the main underlying physical mechanism that increases the resistance of a conductor due to an increase in temperature? Discuss the influence of this effect on V_L .
- The output voltage on the recorder, V_L , is considered to be too small. Redesign the measurement system in such a way that V_L is amplified by a factor 10. For this, introduce an ideal operational amplification element without changing the sensor and recorder elements and their parameters.

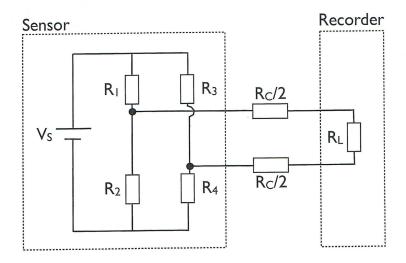


Figure 1: Figure corresponding to question 5.

A

See book

(a) S.IV; P196-197

(b) 10.1.1; P247-249

(c) S.3.1; P165; S.4; P170-172

(d) 9.3; P274-227

(e) 10.1.6; P256-260

(T)

b)
$$I_1 = V_T$$
 Pitot $O_2 = I_2$ Differential $O_2 = I_3$ ADC $O_3 = I_4$ Micro-controller $O_2 = I_3$ Pressure $O_3 = I_4$ Controller $O_3 = I_4$ Controller $O_4 = I_4$ Controller

$$\vec{\epsilon} = \vec{o} - \vec{I}_1 = \vec{o} - 14$$

$$\overline{Q}_1 = \frac{1}{2} \overline{P} \overline{V}_1^2 = \frac{1}{2} \times 1.3 \times (14)^2 = 127.400$$

$$\overline{Q}_2 = \overline{K}_1 \overline{Q}_1 + \overline{Q}_1 = 0.064 \times 127.444 = 12.154$$

$$\overline{O}_3 = \overline{K}_2 \, \overline{O}_2 + \overline{A}_2 = 12.2 \times 12.154 = 148.28 \quad \text{found off} \quad \overline{O}_3 = 148$$

$$\overline{O} = \overline{K_3} \sqrt{(\overline{O_3})^{1.01}} - 59 = 1.44 \sqrt{(148)^{1.01}} - 59 = 2000 14.152$$

$$\sigma_{I_2}^2 \equiv \sigma_{O_i}^2 = \left(\frac{\partial \Delta P}{\partial P}\right)^2 \sigma_P^2 = \left(\frac{1}{2} V_T^2\right)^2 \chi \left(\frac{\partial \cdot 12}{\sqrt{3}}\right)^2 = 46.099$$

$$G_{I_3}^2 = G_{0_2}^2 = \left(\frac{\partial i}{\partial O_1}\right)^2 G_{0_1}^2 + \left(\frac{\partial i}{\partial a_1}\right)^2 G_{a_1}^2 = K_1^2 \times 46.099 + 1 \times \left(\frac{0.04}{\sqrt{3}}\right)^2 = 0.189$$

$$\sigma_{x_4}^2 = \sigma_{0_3}^2 = \left(\frac{3n}{30}\right)^2 \sigma_{0_2}^2 + \left(\frac{3n}{3a_2}\right)^2 \sigma_{0_2}^2 = k_2^2 \times 0.189 + \left(\chi \left(\frac{0.5}{\sqrt{3}}\right)^2 = 28.214$$

$$\sigma_0^2 = \sigma_{v_m}^2 = \left(\frac{\partial v_m}{\partial \rho_3}\right)^2 \sigma_3^2 + \left(\frac{\partial v_m}{\partial k_3}\right)^2 \sigma_{k_3}^2$$

$$= \left(\frac{k_3}{2} \left(n^{1.01} - 59\right)^{-\frac{1}{2}}, (1.01), n^{0.01}\right)^2 \times 28.214 = 0.171$$
 with n=148

Steady-squite survivity of 1:
$$\frac{1}{k} = 1 \binom{n}{k}$$

natural frequency

damping radio

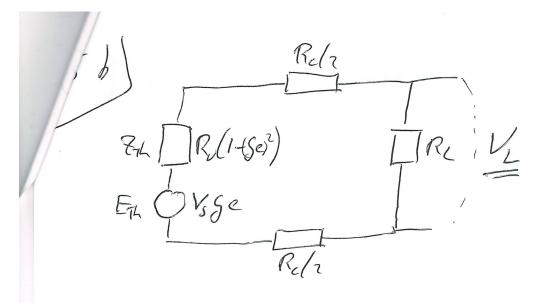
$$\frac{1}{k} = \frac{1}{35} \binom{n}{35}$$
 $\frac{1}{5} = 0.15$

E(t) = $\frac{1}{5}$ of $\frac{1$

Thus,

- (Z+RL) = RL - (Z+R

VC Eth (ZT+RL) = RL

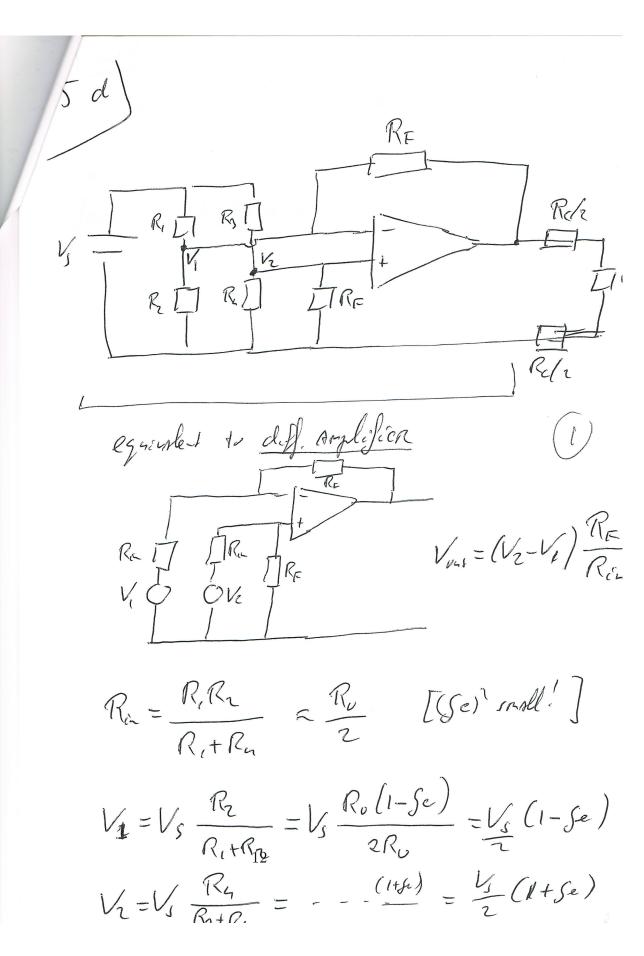

$$E_{Th} = \sqrt{\frac{R_1 R_4 - R_2 R_3}{(R_1 + R_2)(R_3 + R_4)}} = V_s \left(\frac{R_1^2 (1 + ge)^2 - R_2^2 (1 - ge)^2}{4R_1^2} \right)$$

$$= V_s \left(\frac{4 ge}{4} \right) = 2 \sqrt{gg}$$

$$Z_{h} = \frac{R_{3}R_{4}}{R_{3}+R_{4}} + \frac{R_{i}R_{2}}{R_{i}+R_{2}} = \frac{R_{i}(1-ge)(1+ge)}{2R_{i}} + \frac{R_{i}(1+ge)(1+ge)}{2R_{i}} + \frac{R_{i}(1+ge)(1+ge)}{2R_{i}}$$

$$\frac{R_1}{R_2R_1} - \frac{R_4}{R_3+R_4}$$

$$= \frac{R_2(R_3+R_4) - R_2(R_3+R_4)}{(R_3+R_4)(R_3+R_4)}$$



$$V_{L} = E_{L} \frac{R_{L}}{R_{L} + R_{c} + E_{L}} = V_{S} S e^{\frac{10.10^{3} S^{2}}{10.10^{3} + 50 + 100 R}}$$

(1/2)

temporalize effect =>
$$R_1 = R_2 = R_3 = R_4 = R_0 (1 + \alpha R_1)$$
 $R = \int_A = \frac{m_e}{2\pi r} \frac{l}{A}$

temporalize effect => $R_1 = R_2 = R_3 = R_4 = R_0 (1 + \alpha R_1)$
 $R_1 = R_2 = R_3 = R_4 = R_0 (1 + \alpha R_1)$
 $R_2 = R_3 = R_4 = R_0 (1 + \alpha R_2)$
 $R_3 = R_4 = R_3 + R_4 = R_4 + R_4 + R_5 + R_6 +$

Jacober 10 Ambification, =)
$$\frac{2R_F}{R_0} = 10$$

JACJUR 10 Amplification, =)
$$\frac{ZR_F}{R_V} = 10$$

Ly $R_F = 5R_V = 500 \text{ St}$